米,分米,厘米,毫米的换算公式 100毫米等于多少分米( 五 )


【比值】两个数的除也叫两个数的比值 。
【比较数】比较数用“:”表示,读作比较 。
【比较的先行词】比较数前的数字称为比较的先行词 。
【比率的最后一项】比率符号后的数字称为比率的最后一项 。
【比值】比值的前一项除以后一项所得的商称为比值 。
【比例】两个比例相等的公式叫做比例 。
【比例项】组成比例的四个数字称为比例项 。
【比例外项】在四个比例项中,两端的两项称为比例外项 。
【比例内项】在四个比例项中,中间两项称为比例内项 。
例如,80:2=200:5,其中2和200是内部项,80和5是外部项 。
【解比例】根据比例的基本性质 , 如果比例中的任意三项已知,就可以找到比例中的另一个未知项 。比值的未知项称为解比值 。
示例:溶液比例3:8=15:x
解决方案:3x=15×8
x=40
【比例尺】地图上的距离与实际距离的比值称为这张地图的比例尺 。为了计算简单,在上一段中,比例通常写成1的比例 。在地图上:实际距离=比例
【比例量】两个相关的量,一个量变化 , 另一个量也随之变化 。如果这两个量中对应的两个量之比是常数,这两个量称为比例量,它们之间的关系称为比例关系 。比如距离随时间变化,它们的比值(速度)保持不变,所以距离和时间是成正比的量 。
【反比例量】两个相关的量,一个量变化,另一个量也随之变化 。如果这两个量中两个对应数的乘积一定,这两个量称为反比例量,它们之间的关系称为反比例关系 。
【比值的基本性质】比值的前项和后项同时乘以或除以同一个数(0除外),比值不变 。这叫做比率的基本性质 。
【比例的基本性质】在比例中,两个外部项的乘积等于两个内部项的乘积 。这叫做比例的基本属性 。
【百分比书写】百分比通常不以分数的形式书写,而是通过在原始分子后面加上百分号“%”来表示 。例如,90%被写成90%
【百分比和小数的往复】将小数转换为百分比 。只需将小数点向右移动两位,并在后面添加数百个分号 。要将百分比转换为小数,只需去掉百分号,并将小数点向左移动两位 。
例如,0.25=25%,27%=0.27
【百分比和分数的往复运动】要将分数转化为百分比 , 通常先将分数转化为小数(不缺时通常保留三位小数),再将小数转化为百分比;将百分比转化为组件数,首先将百分比重写为组件数,并提供可大致分为最简单部分的值 。
【整数比简化的方法】根据比率的基本性质,整数比的简化可以通过将比率的前后项同时除以比率的前后项的最大公约数,得到最简单的比率 。
【小数比例简化法】小数比例简化根据比例的基本性质,将比例的前后项同时展开相同倍数,转换成整数比例,再对整数进行简化 。
【分数比的简化方法】简化含有分数的比例 。将比值的前后项乘以分母的最小公倍数,将分数比转化为整数比,然后将整数比简化 。
5.几何概念:
【线段】用尺子连接两点,得到线段 。这两点称为线段的端点 。线段AB代表端点为A点和b点的线段 。
【线段的基本性质】在所有连接两点的直线中,线段最短,可以测出线段的长度 。
【射线】无限延伸线段的一端得到射线 。光线只有一个端点,其长度无法测量 。
【直线】无限延伸线段的两端,会得到一条直线 。直线没有端点,无法测量 。一点之后可以画无数条直线,两点之后只能画一条直线 。
【两点之间的距离】连接两点的线段长度称为这两点之间的距离(线段AB的长度为A点到B点之间的距离) 。
【角度】由两条光线组成的具有共同端点的图形称为角度 。
【角的顶点】组成角的两条射线的公共端点称为角的顶点 。
【角边】组成一个角度的两条光线称为角边 。
【角内】角可以看作是光线围绕端点从一个位置旋转到另一个位置形成的图形 。旋转时光线穿过的平面部分是角的内侧 。
【平角】光线OA围绕点o旋转,当结束位置OC和开始位置OA在一条直线上时,形成的角度称为平角 。直线角度是180度 。
【圆角】光线OA绕点o旋转 , 回到起始位置OA时,形成的角度称为圆角 。圆角是360度 。
【直角】半个直角叫直角 。直角是90度 。
【锐角】小于直角的角称为锐角 。锐角小于90度 。
【钝角】大于直角但小于直角的角称为钝角 。钝角小于180度,大于90度 。
【角平分线】光线将一个角分成两个相等的角 。这条光线被称为角平分线 。

推荐阅读