使用 Transformers 在你自己的数据集上训练文本分类模型

最近实在是有点忙,没啥时间写博客了。趁着周末水一文,把最近用 huggingface transformers 训练文本分类模型时遇到的一个小问题说下。
背景 之前只闻 transformers 超厉害超好用,但是没有实际用过。之前涉及到 bert 类模型都是直接手写或是在别人的基础上修改。但这次由于某些原因,需要快速训练一个简单的文本分类模型。其实这种场景应该挺多的,例如简单的 POC 或是临时测试某些模型。
我的需求很简单:用我们自己的数据集,快速训练一个文本分类模型,验证想法。
我觉得如此简单的一个需求,应该有模板代码。但实际去搜的时候发现,官方文档什么时候变得这么多这么庞大了?还多了个 Trainer API?瞬间让我想起了 Pytorch Lightning 那个坑人的同名 API。但可能是时间原因,找了一圈没找到适用于自定义数据集的代码,都是用的官方、预定义的数据集。
所以弄完后,我决定简单写一个文章,来说下这原本应该极其容易解决的事情。
数据 假设我们数据的格式如下:

0 第一个句子 1 第二个句子 0 第三个句子

即每一行都是 label sentence 的格式,中间空格分隔。并且我们已将数据集分成了 train.txtval.txt
代码 加载数据集
首先使用 datasets 加载数据集:
from datasets import load_dataset dataset = load_dataset('text', data_files={'train': 'data/train_20w.txt', 'test': 'data/val_2w.txt'})

加载后的 dataset 是一个 DatasetDict 对象:
DatasetDict({ train: Dataset({ features: ['text'], num_rows: 3 }) test: Dataset({ features: ['text'], num_rows: 3 }) })

类似 tf.data ,此后我们需要对其进行 map ,对每一个句子进行 tokenize、padding、batch、shuffle:
def tokenize_function(examples): labels = [] texts = [] for example in examples['text']: split = example.split(' ', maxsplit=1) labels.append(int(split[0])) texts.append(split[1]) tokenized = tokenizer(texts, padding='max_length', truncation=True, max_length=32) tokenized['labels'] = labels return tokenizedtokenized_datasets = dataset.map(tokenize_function, batched=True) train_dataset = tokenized_datasets["train"].shuffle(seed=42) eval_dataset = tokenized_datasets["test"].shuffle(seed=42)

【使用 Transformers 在你自己的数据集上训练文本分类模型】根据数据集格式不同,我们可以在 tokenize_function 中随意自定义处理过程,以得到 text 和 labels。注意 batch_sizemax_length 也是在此处指定。处理完我们便得到了可以输入给模型的训练集和测试集。
训练
model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=2, cache_dir='data/pretrained') training_args = TrainingArguments('ckpts', per_device_train_batch_size=256, num_train_epochs=5) trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=eval_dataset ) trainer.train()

你可以根据情况修改训练 batchsize per_device_train_batch_size
完整代码 完整代码见 GitHub。
END

    推荐阅读