3d打印|30次实验发现12种最佳配方,MIT最新AI算法将3D打印材料性能空间扩大288倍( 二 )


为了最大限度地减少测试不同配方所需的资源,并快速找到更好的性能设计,研究人员使用了基于贝叶斯优化的数据驱动方法(图 F) 。
整个决策过程中的一个关键洞见,在于平衡利用最有前途的公式和探索设计空间的不确定区域 。实验结果展示了快速的性能空间改进和 12 种 3D 打印材料的发现,仅在 30 次算法迭代后就实现了最佳的融合方案,该方法还能很容易地推广到其他配方设计问题,如坚韧水凝胶、外科密封剂或纳米复合涂层的优化中 。
性能空间体积增加 288 倍具体而言,关于基本成分和材料配方,研究人员首先生成了一组相互兼容的光固化初级配方,以混合并具有不同的机械性能,当然,他们并不是从头开始开发打印材料,而是首先确定了八种商用配方成分(包含一种光引发剂、三种稀释剂和四种低聚物),然后,六种主要配方(A 至 F)由库中的八种主要成分组成 。
为确保配方成分的所有可能组合均可 3D 打印,且在可打印粘度范围内,研究人员还添加了表面活性剂以调整材料表面张力,增加与打印机的兼容性 。
3d打印|30次实验发现12种最佳配方,MIT最新AI算法将3D打印材料性能空间扩大288倍
文章图片

图|系统中使用的主要配方以及主要配方性能,涵盖广泛的机械性能(来源:Science Advances)
之后,研究人员使用基于喷射阀分配技术的 3D 打印进行实验,与其他类型的 3D 打印技术相比,喷射阀能够分配具有多种流体特性的墨水材质,且需要较少的工艺参数调整就能实现可靠的打印过程,这些特性增加了可测试的材质种类,可减少样品制作和数据收集的时间 。
最后,为了从每个配方中提取性能数据,研究人员使用通用测试仪对 3D 打印和后处理的样品进行压缩测试 。
论文中提出优化算法的目标是在主要配方 A 到 F 的 6D 设计空间中导航,并快速发现关于三个目标的最佳性能设计:韧性、压缩模量和最大强度 。之所以选择这些性能指标,是因为这些特征是工程应用中重要机械性能,通常,这三种材料特性都需要最大化 。
然而,这些目标往往相互冲突,因此没有单一的最优解决方案,而是一组具有不同权衡的最佳性能设计 。论文中提出的机器学习方法通过学习预测未测试样本的性能,并指导设计空间的采样,以快速找到性能更好的设计 。
3d打印|30次实验发现12种最佳配方,MIT最新AI算法将3D打印材料性能空间扩大288倍
文章图片

图|概述用于寻找最佳 3D 打印材料配方的优化算法(来源:Science Advances)
为了测试实验中提议的材料开发工作流程,研究人员总共进行了 30 次算法迭代,因为除了初始数据集外,预算固定为 120 个样本 。在每个算法迭代中,为了减少时间,并行测试了四个样本,在优化过程中总共测试了 120 个样本,在测试了总共 150 个样品(30 个初始样品和 120 个算法提出的样品)后,系统最终确定了一组 12 种配方,它们在压缩模量、最大压缩强度和韧性三个机械性能方面具有最佳权衡 。
经过迭代的算法鼓励探索性能空间的未知区域,并发现性能变化较大的材料 。

当监测主要配方和所有评估样品的抗压强度和抗压模量性能时,性能空间将扩大 250%;抗压强度和韧性增大较大,提高了 399%;在压缩模量和韧性方面,性能空间提高了 584% 。凸面外壳是所有测试样品内封闭的性能空间体积的度量,比最初五种主要配方的性能空间体积增加了 288 倍,这些改进对于需要特定属性范围,且无法轻易手动找到的应用程序可能很重要 。

推荐阅读