python|文本分类算法TextCNN原理详解
详情请看:膜拜大佬!【原创】文本分类算法TextCNN原理详解(一) - ModifyBlog - 博客园
Textcnn 原理 与rnn lstm 的比较, Textcnn更快
textCNN的总结
本次我们介绍的textCNN是一个应用了CNN网络的文本分类模型。
- textCNN的流程:先将文本分词做embeeding得到词向量, 将词向量经过一层卷积,一层max-pooling, 最后将输出外接softmax 来做n分类。
- textCNN 的优势:模型简单, 训练速度快,效果不错。
- textCNN的缺点:模型可解释型不强,在调优模型的时候,很难根据训练的结果去针对性的调整具体的特征,因为在textCNN中没有类似gbdt模型中特征重要度(feature importance)的概念, 所以很难去评估每个特征的重要度。
- 【python|文本分类算法TextCNN原理详解】TextCNN最大优势网络结构简单 ,在模型网络结构如此简单的情况下,通过引入已经训练好的词向量依旧有很不错的效果,在多项数据数据集上超越benchmark。
- 网络结构简单导致参数数目少, 计算量少, 训练速度快,在单机单卡的v100机器上,训练165万数据, 迭代26万步,半个小时左右可以收敛。

文章图片
推荐阅读
- python学习之|python学习之 实现QQ自动发送消息
- 逻辑回归的理解与python示例
- python自定义封装带颜色的logging模块
- 【Leetcode/Python】001-Two|【Leetcode/Python】001-Two Sum
- Python基础|Python基础 - 练习1
- Python爬虫|Python爬虫 --- 1.4 正则表达式(re库)
- Python(pathlib模块)
- python青少年编程比赛_第十一届蓝桥杯大赛青少年创意编程组比赛细则
- Python数据分析(一)(Matplotlib使用)
- jQuery插件